Alternative Search Engine

Uber releases Ludwig, an open-source AI 'toolbox' built on top of TensorFlow

Source: venturebeat.com   ( Business & Career > Business )

Feb 11, 2019 9:50 AM 5+ day ago

Uber's Ludwig, an open source 'toolbox' built on top of Google's TensorFlow framework, allows users to train AI models without code....Read more.

Search Builder

(Click to add to search box)
Search Suggestions Level 1
Uber releases Ludwig  image captioning model  time series forecasting  test AI models  TensorFlow framework  Image Credit  programming language  PyTorch machine  text decoder  category decoder  language modeling  time series  data sets  scalable solutions  point clouds  future plans  pretrained models  graphics cards  image captioning  model training  testing models  data preprocessing  machine translation  source Ludwig  AI architectures  TensorFlow Uber  programming piece  source toolbox  AI systems  blog post  output decoders  prototyping process  data processing  preprocessing data  tabular dataset  YAML configuration  input features  output target  map tensors  data structures  use case  model definitions  
Search Suggestions Level 2
Uber releases Ludwig  emotion analysis GitHub  projects MixedEmotions  inferencing engine  edge Connect  Sarah Bell  
Search Suggestions Level 3
Fractal Analytics  Flex Logix  Linley Processor Conference  Flex Logix CEO  cofounder Geoff Tate  cofounder Cheng Wang  image captioning model  time series forecasting  test AI models  Godot game engine  DNA sequencing data  BaseSpace Sequence Hub  GitHub Universe conference  GitHub projects  inferencing engine  funding round  source projects  Image Credit  marketing analytics  San Francisco  United States  energy consumption  source repositories  minority stake  programming languages  coding language  Learning Lab  skills training  promotions optimization  government data  track record  Srikanth Velamakanni  project management  intelligence market  source collaboration  Azure Docs  fund mergers  customer analytics  model structures  MAC efficiency  Nmax engine  Nmax series  debut today  cost component  Santa Clara  t change  power constraint  interconnect technology  FPGA chips  tera operations  energy efficiency  Apax Partners  feature abstractions  data manipulations  inference generations  data visualization  sequential models  TensorSpace layer  layer data  AI deployment  TA Associates  processing batches  Khazanah Nasional  Nmax engines  AI capabilities  output decoders  category decoder  text decoder  map tensors  image captioning  language modeling  training AI  testing models  data structures  graphics cards  prototyping process  programming piece  source toolbox  TensorFlow framework  AI systems  blog post  data processing  preprocessing data  AI architectures  use case  tabular dataset  YAML configuration  input features  output target  model definitions  model training  machine translation  programming language  source release  data preprocessing  AI software  source Ludwig  data sets  AI tools  scalable solutions  genomic data  point clouds  PyTorch machine  primate tree  Stanford University  Illumina team  press release  

**Content contained on this site is provided on an “as is” basis. 4Internet, LLC makes no commitments regarding the content and does not review it, so don't assume that it's been reviewed. What you see here may not be accurate and should not be relied upon. The content does not necessarily represent the views and opinions of 4Internet, LLC. You use this service and everything you see here at your own risk. Content displayed may be subject to copyright. Content is removed on a case by case basis. To request that content be removed, contact us using the following form: Contact Us.